Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

نویسندگان

  • Lijun Wang
  • Dun Liu
  • Ru Zhou
  • Zhigang Wang
  • Alfred Cuschieri
چکیده

Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs) can potentially act like "lighting rods" or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs), the effective pulse amplitude was reduced to 50 V/cm (main field)/15 V/cm (alignment field) at the optimized pulse frequency (5 Hz) of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane.

Molecular dynamics simulations based on a novel polarizable nanotube model were performed to study the dynamics in translocation of a single-stranded deoxyribonucleic acid oligonucleotide through a polarized carbon nanotube membrane by an applied electric field. The study revealed a nonlinear dependence of translocation velocity and an inverse quadratic dependence of translocation time on the e...

متن کامل

High yield production of defect less carbon nanotubes in an arc process

An efficient modified arc plasma method, where a focusing electric field is superimposed on the arc electric field, is optimized for the bulk generation of highly pure multi-walled carbon nanotubes (MWNTs). Raman spectroscopy and thermogravimetric measurements have been used to optimize the process. It was found that, at the optimized focusing field configuration, this process can utilize about...

متن کامل

Finite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation

Introduction: Irreversible electroporation (IRE) is a process in which the membrane of the cancer cells are irreversibly damaged with the use of high-intensity electric pulses, which in turn leads to cell death. The IRE is a non-thermal way to ablate the cancer cells. This process relies on the distribution of the electric field, which affects the pulse amplitude, width, and electrical conducti...

متن کامل

Field electron emission properties of carbon nanotube films deposited by electrophoresis

The merit of various kinds of carbon nanotubes as field electron emission cathode materials has been studied. The field electron emission characteristics of electrophoretically deposited films of single walled carbon nanotubes, multiwalled carbon nanotubes of diameter between 10 and 20 and .50 nm and carbon nanofibres with diameters between 200 and 600 nm were investigated. Results of the measu...

متن کامل

Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes

The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015